Universal computably Enumerable Equivalence Relations

نویسندگان

  • Uri Andrews
  • Steffen Lempp
  • Joseph S. Miller
  • Keng Meng Ng
  • Luca San Mauro
  • Andrea Sorbi
چکیده

We study computably enumerable equivalence relations (ceers), under the reducibility R ≤ S if there exists a computable function f such that x R y if and only if f(x) S f(y), for every x, y. We show that the degrees of ceers under the equivalence relation generated by ≤ form a bounded poset that is neither a lower semilattice, nor an upper semilattice, and its first order theory is undecidable. We then study the universal ceers. We show that 1) the uniformly effectively inseparable ceers are universal, but there are effectively inseparable ceers that are not universal; 2) a ceer R is universal if and only if R′ ≤ R, where R′ denotes the halting jump operator introduced by Gao and Gerdes (answering an open question of Gao and Gerdes); and 3) both the index set of the universal ceers and the index set of the uniformly effectively inseparable ceers are Σ3-complete (the former answering an open question of Gao and Gerdes).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computably Enumerable Equivalence Relations

We study computably enumerable equivalence relations (ceers) on N and unravel a rich structural theory for a strong notion of reducibility among ceers.

متن کامل

Equivalence Relations That Are Σ03 Complete for Computable Reducibility - (Extended Abstract)

Let E,F be equivalence relations on N. We say that E is computably reducible to F , written E ≤ F , if there is a computable function p : N→ N such that xEy ↔ p(x)Fp(y). We show that several natural Σ 3 equivalence relations are in fact Σ 3 complete for this reducibility. Firstly, we show that one-one equivalence of computably enumerable sets, as an equivalence relation on indices, is Σ 3 compl...

متن کامل

The Complexity of Index Sets of Classes of computably Enumerable Equivalence Relations

Let ďc be computable reducibility on ceers. We show that for every computably enumerable equivalence relation (or ceer) R with infinitely many equivalence classes, the index sets ti : Ri ďc Ru (with R non-universal), ti : Ri ěc Ru, and ti : Ri ”c Ru are Σ3 complete, whereas in case R has only finitely many equivalence classes, we have that ti : Ri ďc Ru is Π2 complete, and ti : Ri ěc Ru (with R...

متن کامل

Effective categoricity of equivalence structures

We investigate effective categoricity of computable equivalence structures A. We show that A is computably categorical if and only if A has only finitely many finite equivalence classes, or A has only finitely many infinite classes, bounded character, and at most one finite k such that there are infinitely many classes of size k. We also prove that all computably categorical structures are rela...

متن کامل

Universal computably enumerable sets and initial segment prefix-free complexity

We show that there are Turing complete computably enumerable sets of arbitrarily low non-trivial initial segment prefix-free complexity. In particular, given any computably enumerable set A with non-trivial prefixfree initial segment complexity, there exists a Turing complete computably enumerable set B with complexity strictly less than the complexity of A. On the other hand it is known that s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2014